home *** CD-ROM | disk | FTP | other *** search
-
-
-
- SSSSOOOORRRRMMMMBBBBRRRR((((3333SSSS)))) SSSSOOOORRRRMMMMBBBBRRRR((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- SORMBR - VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
- with SIDE = 'L' SIDE = 'R' TRANS = 'N'
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
- LWORK, INFO )
-
- CHARACTER SIDE, TRANS, VECT
-
- INTEGER INFO, K, LDA, LDC, LWORK, M, N
-
- REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with
- SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C
- C * Q**T
-
- If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C with
- SIDE = 'L' SIDE = 'R'
- TRANS = 'N': P * C C * P
- TRANS = 'T': P**T * C C * P**T
-
- Here Q and P**T are the orthogonal matrices determined by SGEBRD when
- reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and P**T
- are defined as products of elementary reflectors H(i) and G(i)
- respectively.
-
- Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order
- of the orthogonal matrix Q or P**T that is applied.
-
- If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k,
- Q = H(1) H(2) . . . H(k);
- if nq < k, Q = H(1) H(2) . . . H(nq-1).
-
- If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P
- = G(1) G(2) . . . G(k);
- if k >= nq, P = G(1) G(2) . . . G(nq-1).
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- SSSSOOOORRRRMMMMBBBBRRRR((((3333SSSS)))) SSSSOOOORRRRMMMMBBBBRRRR((((3333SSSS))))
-
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- VECT (input) CHARACTER*1
- = 'Q': apply Q or Q**T;
- = 'P': apply P or P**T.
-
- SIDE (input) CHARACTER*1
- = 'L': apply Q, Q**T, P or P**T from the Left;
- = 'R': apply Q, Q**T, P or P**T from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q or P;
- = 'T': Transpose, apply Q**T or P**T.
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original matrix
- reduced by SGEBRD. If VECT = 'P', the number of rows in the
- original matrix reduced by SGEBRD. K >= 0.
-
- A (input) REAL array, dimension
- (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if VECT = 'P' The
- vectors which define the elementary reflectors H(i) and G(i),
- whose products determine the matrices Q and P, as returned by
- SGEBRD.
-
- LDA (input) INTEGER
- The leading dimension of the array A. If VECT = 'Q', LDA >=
- max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
-
- TAU (input) REAL array, dimension (min(nq,K))
- TAU(i) must contain the scalar factor of the elementary reflector
- H(i) or G(i) which determines Q or P, as returned by SGEBRD in
- the array argument TAUQ or TAUP.
-
- C (input/output) REAL array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C
- or Q**T*C or C*Q**T or C*Q or P*C or P**T*C or C*P or C*P**T.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) REAL array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = 'L', LWORK >=
- max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- SSSSOOOORRRRMMMMBBBBRRRR((((3333SSSS)))) SSSSOOOORRRRMMMMBBBBRRRR((((3333SSSS))))
-
-
-
- performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if
- SIDE = 'R', where NB is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns this
- value as the first entry of the WORK array, and no error message
- related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-